首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4573篇
  免费   56篇
  国内免费   183篇
电工技术   10篇
综合类   75篇
化学工业   953篇
金属工艺   1215篇
机械仪表   240篇
建筑科学   65篇
矿业工程   87篇
能源动力   332篇
轻工业   23篇
石油天然气   34篇
武器工业   11篇
无线电   100篇
一般工业技术   1370篇
冶金工业   206篇
原子能技术   54篇
自动化技术   37篇
  2023年   41篇
  2022年   75篇
  2021年   138篇
  2020年   114篇
  2019年   121篇
  2018年   110篇
  2017年   132篇
  2016年   91篇
  2015年   117篇
  2014年   223篇
  2013年   271篇
  2012年   204篇
  2011年   403篇
  2010年   293篇
  2009年   356篇
  2008年   280篇
  2007年   317篇
  2006年   251篇
  2005年   187篇
  2004年   156篇
  2003年   155篇
  2002年   116篇
  2001年   99篇
  2000年   99篇
  1999年   80篇
  1998年   90篇
  1997年   60篇
  1996年   47篇
  1995年   58篇
  1994年   30篇
  1993年   26篇
  1992年   13篇
  1991年   14篇
  1990年   16篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1983年   2篇
  1981年   3篇
  1965年   1篇
排序方式: 共有4812条查询结果,搜索用时 15 毫秒
101.
Ti–Nb β alloys are a promising alternative as an implant material due to their good properties and low Young’s modulus, compared to other Ti-alloys currently employed as biomaterials. In this study, three materials of the Ti–Nb and Ti–Nb–Fe systems were produced by powder metallurgy techniques starting from TiH2 (TH) powder. Several sintering cycles were employed to evaluate the H2 elimination and the effect of sintering temperature on densification and fraction of β-Ti phase. Also, the influence of alloying element size using two kinds of Fe powder was evaluated. The highest loss of H2 was achieved by decreasing heating rate at the temperature range of hydride decomposition. SEM images and XRD results show mainly a β-Ti phase for TH–40Nb and TH–5Fe–25Nb samples. The TH–12Nb sample shows (α?+?β) microstructure. Fe addition with smaller particle size seems to improve the diffusion of Nb into Ti which promotes a higher β-phase fraction and sample homogeneity.  相似文献   
102.
A gradient transition multilayer hydroxyapatite/titanium nitride (HA/TiN) coating was prepared on the Ti-6Al-4V alloy by magnetron sputtering. The composition, surface topography, microstructure, adhesion strength and electrochemical properties of the as-deposited coatings were characterized by SEM/EDS, AFM, XRD, FT-IR and electrochemical workstation. The experimental results showed that the single TiN coating deposited at a partial pressure of nitrogen (N2) of 0.08?Pa had the best internal stress and tribological performance, and its volume loss was only 0.89% of that of Ti-6Al-4V alloy. The introduction of the TiN transition layer greatly improved the wear resistance of the Ti-6Al-4V alloy, and the adhesion strength of the HA layer to the substrate increased from 6.50?±?0.5?N to 11.70?±?1.2?N, an increase of 56%. The HA/TiN coating surface consisted of uniform hemispherical particles with dense structure and invisible defects (micro-cracks and pores). For the HA surface layer, the crystal structure and active hydroxyl (-OH) group was restored after heat treatment. Potentiodynamic polarization experiments indicated that the HA/TiN coating achieved the lowest corrosion current density and the most positive corrosion potential compared to the single TiN layer and Ti-6Al-4V alloy. In summary, it can be conclude that the gradient transition layer can well improve the mechanical properties and electrochemical behavior of the titanium alloy, and largely ensuring the stability of the surface bioactive coating.  相似文献   
103.
《Ceramics International》2022,48(4):5083-5090
Directional lamellar porous titanium scaffolds are widely used as bone implant bearing materials because of their anisotropic pore structure. Their mechanical properties can be effectively improved by enhancing the strength of pore walls through the introduction of ceramics. In this work, porous titanium implants were prepared by freeze casting combined with TiH2 decomposition. The graphene was introduced into the pore walls of porous titanium, which could transform into titanium carbide (TiC) in situ upon sintering. TiC was evenly distributed in the lamellar pore walls, and the interface was well bonded. The compression strength of the fabricated implants was up to 389.94 MPa when the graphene content was 3 wt%, which was 377.8% times as high as the porous titanium. The crack propagation was resisted by TiC because of the “pinning” effect on the pore wall. Some of TiC were pulled out from the matrix, and others were fractured. The strength of the fabricated implants was improved significantly by the large consumption of fracture energy. Also, fabricated porous titanium implants with TiC are suitable for bone implantation.  相似文献   
104.
In this paper, superplastic deformation behaviour of a high Nb containing TiAl alloy with fine (α2 + γ) microstructure, Ti–43.5Al–8Nb–0.2W–0.2B (at.%), has been examined and studied by means of hot tension from 850 °C to 1050 °C under an initial strain rate of 10−4 s−1. The mechanical behaviour and microstructure evolution have been characterized and analyzed. Besides, to gain insight into deformation mechanisms, the texture evolution during deformation at ordinary (non-superplastic) and superplastic conditions has been systematically studied. The results showed that, the alloy exhibited impressive superplastic elongation at 1000 °C with a strain-rate sensitivity exponent (m) of about 0.5 and an apparent activation energy (Qapp) value of about 390 kJ/mol. The microstructural characterization showed that, when the alloy was deformed at ordinary condition (850 °C), severe grain refinement occurred and the fraction of low-angle grain boundary notably increased. Meanwhile, the textures were characterized by <100> and <111> double-fiber components parallel to the tensile direction. All these observations suggested a dislocation slip and twinning mechanism. However, if deformed at the superplastic condition (1000 °C), it was found that the microstructure was fairly stable in terms of grain size, morphology and grain boundary characteristics during tension, but a continuous weakening of the initial <110> fiber texture (resulted from canned-forging) was observed. This was believed to be an indication of grain boundary sliding mechanism. Moreover, the deformation texture (<100> + <111>)—though is very weak—was simultaneously appeared. According to a detailed discussion on the deformation kinetics and microstructure evolution, it was believed that the slip/twinning-accommodated grain boundary sliding was responsible for superplastic deformation and the dislocation climb inside of γ grains was the rate-controlling step.  相似文献   
105.
Manganese oxides on titanium dioxide were prepared by impregnation method at various calcination temperatures and by deposition-precipitation method and the catalysts were characterized using TG-DTA, XRD, XPS, and N2 adsorption. Various oxidation states for manganese were obtained and activity towards ozone decomposition inside a nonthermal plasma catalysis reactor was investigated. Activity tests show that with increasing manganese oxidation state, the greater the degree of ozone decomposition inside the reactor. MnOx/TiO2 prepared by impregnation method calcined at 350 °C showed the highest decrease in ozone concentration.  相似文献   
106.
A newly developed Ti–46Al–6Nb-0.5W-0.5Cr-0.3Si-0.1C alloy was oxidized isothermally and cyclically in air, and its high-temperature oxidation behavior was investigated. When the alloy was isothermally oxidized at 700 °C for 2000 h, the weight gain was only 0.15 mg/cm2. The parabolic rate constant, kp (mg2/cm4·h), measured from isothermal oxidation tests was 0.002 at 900 °C and 0.009 at 1000 °C. Such excellent isothermal oxidation resistance resulted from the formation of the dense, continuous Al2O3 layer between the outer TiO2 layer and the inner (TiO2-rich, Al2O3-deficient) layer. The alloy also displayed good cyclic oxidation resistance at 900 °C. Some noticeable scale spallation began to occur after 68 h at 1000 °C during the cyclic oxidation test.  相似文献   
107.
In this study, photocatalytic degradation of methyl orange (MO) as an example of organic dye was investigated using different wt% Pd-loaded and N-doped P-25 titanium dioxide (TiO2) nanoparticles, as example of metal and nonmetal-doped TiO2, respectively. The Pd-loaded and N-doped TiO2 photocatalysts were prepared by post-incorporation method using K2PdCl4 and urea, respectively, as precursors. A variety of surface analysis techniques were used for characterization of surface and functional group while using ultraviolet/visible (UV–vis) analysis for monitoring photocatalytic degradation of MO. Kinetic parameters were obtained using Langmuir-Hinshelwood model to determine the degradation rate constants. It was found that the metal-loaded titanium dioxide degraded MO in water at a higher rate than did non-metal-loaded titanium dioxide fabricated by using the post-synthesis method. Also, the pure P25-TiO2 degraded MO more than N-doped TiO2 because of decreased surface area by particle agglomeration after being made by the post-incorporation method.  相似文献   
108.
Oxidation behavior of Ti–46Al–8Nb (in at.%) alloy with boron and carbon addition under thermal cycling conditions was investigated. Oxidation of Ti–46Al–8Nb, Ti–46Al–8Nb–1B and Ti–46Al–8Nb–1B-0.25C (in at.%) alloys was carried out at 1073 K in laboratory air for 42 cycles (1 cycle, 24 h), 1008 h in total. The mass loss rates of Ti–46Al–8Nb and Ti–46Al–8Nb–1B measured during the oxidation were similar. The best oxidation resistance was found for Ti–46Al–8Nb–1B-0.25C alloy with the smallest mass change. XRD and SEM-EDS investigations showed that in all cases, the oxide scales compositions were substantially similar. The scale consisted of an outer layer built of Al2O3 with the presence of some amounts of TiO2, an intermediate layer of the scale consisting of TiO2, an inner layer composed of oxides and nitrides. Additionally, niobium rich particles at the scale/substrate interface were present. The oxidation mechanism of Ti–46Al–8Nb was studied via two-stage isothermal oxidation (24 h in 16O2 followed by 24 h in 18O2) at 1073 K combined with secondary neutral mass spectroscopy (SNMS). These results indicate that the oxidation mechanism depends on a mixed diffusion process, consisting of outward transport of cations and simultaneous oxygen inward transport.  相似文献   
109.
This work presents a study of the Spark Plasma Sintering of a boron and tungsten containing alloy (Ti49,92Al48W2B0,08, called IRIS) as a function of the sintering temperature. Microstructures of sintered alloys are analyzed by scanning and transmission electron microscopies. Investigations mainly focus on a fine near-lamellar microstructure. Attention is paid to both characteristic dimensions of this microstructure and orientation relationships between various phases.The fine near-lamellar microstructure is formed by lamellar grains surrounded by extended γ zones containing β0 precipitates. The size of lamellar grains ranges from 35 to 45 μm while the width of the borders remains between 5 and 10 μm. Effects of both boron addition and sintering temperature are studied. Orientation relationships between γ lamellae and γ grains in the borders, as well as between the γ matrix and the β0 precipitates are investigated. As a result of these investigations, a formation mechanism of this microstructure is proposed and discussed. The origin of the grain growth limitation during the SPS processing is particularly analyzed.  相似文献   
110.
This work discusses the effect of the cooling rate during a forging process on the microstructure and corrosion behavior of a Ti–6Al–4V extra-low interstitial (ELI) alloy, which is commonly used as biomaterial. The samples were hot forged at two different temperatures, both of them within the dual phase field (α + β) and a constant strain rate of 4 × 10−3 s−1 was employed during the tests. The samples were cooled in three different cooling media (water, air and clay) and the microstructure was analyzed using scanning electron microscopy (SEM). The corrosion resistance was determined by cyclic polarization tests in Ringer’s solution at 37 °C. Comparison between the results obtained for forged and commercial samples allowed to establish some correlations between cooling rate, microstructure and corrosion resistance. It was found that the clay as a cooling medium is a good candidate to obtain a proper microstructure and properties for biomedical applications, eliminating the requirement of subsequent heat treatment and reducing costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号